LetsBuyBattery.com

Online Battery Megastore – Buy Sell Batteries

Mono Crystalline vs Multi Crystalline or Poly Multi Crystalline Solar Panels

Leave a comment

Thinking about buying solar panels, but got confused about which type to go for? Don’t worry Letsbuybattery.com Team is here to help you out with the decision and research.

There’s a lots of variables that you should take into account when you are buying a solar photovoltaic (PV) system .

Monocrystalline Silicon Solar Cells

Solar cells made of monocrystalline silicon (mono-Si), also called single-crystalline silicon (single-crystal-Si), are quite easily recognizable by an external even coloring and uniform look, indicating high-purity silicon, as you can see on the picture below:

Mono crystalline solar panels have cells that are cut from a chunk of silicon that has been grown from a single crystal. Growing these single crystals is costly; therefore mono-crystalline panels can be more expensive than other types of solar panels.

monocrystalline-solar-installation-e1372104826549

Advantages

  • Monocrystalline solar panels have the highest efficiency rates since they are made out of the highest-grade silicon.
  • Monocrystalline silicon solar panels are space-efficient. Since these solar panels yield the highest power outputs, they also require the least amount of space compared to any other types. Monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels.
  • Monocrystalline solar panels live the longest. Most solar panel manufacturers put a 25-year warranty on their monocrystalline solar panels.
  • Tend to perform better than similarly rated polycrystalline solar panels at low-light conditions.

Disadvantages

  • Monocrystalline solar panels are the most expensive. From a financial standpoint, a solar panel that is made of polycrystalline silicon (and in some cases thin-film) can be a better choice for some homeowners.
  • If the solar panel is partially covered with shade, dirt or snow, the entire circuit can break down.
  • The Czochralski process is used to produce monocrystalline silicon. It results in large cylindrical ingots. Four sides are cut out of the ingots to make silicon wafers. A significant amount of the original silicon ends up as waste.
  • Monocrystalline solar panels tend to be more efficient in warm weather. Performance suffers as temperature goes up, but less so than polycrystalline solar panels. For most homeowners temperature is not a concern.

Polycrystalline Silicon Solar Cells

Multi-crystalline or poly-crystalline solar panels have cells that are grown from multifaceted crystalline material – a crystal that has grown in multiple directions. Multi crystalline solar cells have slightly lower cell efficiency than their mono cousins due to the multifaceted crystal the cells are grown from; however this is not a major factor as the multi crystalline crystal is cut in a square rather than the rounder shape of the mono crystalline cell. This square shape means more of the solar panel area can actually be used to produce solar power as the available solar panel area is used more efficiently.

The first solar panels based on polycrystalline silicon, which also is known as polysilicon (p-Si) and multi-crystalline silicon (mc-Si), were introduced to the market in 1981. Unlike monocrystalline-based solar panels, polycrystalline solar panels do not require the Czochralski process. Raw silicon is melted and poured into a square mold, which is cooled and cut into perfectly square wafers.

multi-poly-crystalline-solar

Advantages

  • The process used to make polycrystalline silicon is simpler and cost less. The amount of waste silicon is less compared to monocrystalline.
  • Polycrystalline solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. This technically means that they perform slightly worse than monocrystalline solar panels in high temperatures. Heat can affect the performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account.

 

Disadvantages

  • The efficiency of polycrystalline-based solar panels is typically 13-16%. Because of lower silicon purity, polycrystalline solar panels are not quite as efficient as monocrystalline solar panels.
  • Lower space-efficiency. You generally need to cover a larger surface to output the same electrical power as you would with a solar panel made of monocrystalline silicon. However, this does not mean every monocrystalline solar panel perform better than those based on polycrystalline silicon.
  • Monocrystalline and thin-film solar panels tend to be more aesthetically pleasing since they have a more uniform look compared to the speckled blue color of polycrystalline silicon.
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s